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The stack-driven flow between two interconnected rooms produced by a single heat
source is studied. In particular, the features of the transient flow for different positions
and areas of two openings in the shared vertical wall are analysed. An analytical model
provides the time evolution of the stratified flows in rooms of any size. The concept
of an equivalent layer representing a non-uniform density profile, which is useful in
other contexts, is included in the theoretical approach and provides physical insight
and aids the mathematical solution of the problem. New salt-bath experiments are
performed to simulate the thermal forcing between the rooms, to validate the model
and to analyse the mixing generated and the effects of a source of volume in the
configuration studied.

1. Introduction
Sources of buoyancy, such as occupants or equipment, may generate significant flows

in buildings. These sources tend to be isolated and produce buoyant plumes that rise
above them. The warm air accumulates near the ceiling and a stable stratification
is established within each room of the building. Different vertical stratifications
generated in adjacent rooms with different heat loads can drive flows through openings
in the dividing walls. Thus the ventilation patterns and the temperature distributions
in the whole building depend on the geometry of these interconnections and the
distribution of the heat loads in the rooms. For example, the pressure difference
caused by a temperature difference of 3 ◦C between two rooms of height 2 m will
drive a flow of about 0.6 m s−1, which is strong enough to transport heat and pollutants
rapidly from one room to another. However, if only the upper part of a room is warm,
there will be no flow unless there is an opening in this upper region.

Lin & Linden (2002) examined the time-dependent flow and stratification between
two rooms with interconnecting openings located at the top and bottom of a dividing
wall. The heights of the rooms were the same but the floor areas differed, and heating
was applied only in the smaller room. As this room was heated, warm air flowed out
through the top opening into the larger cold room, and travelled across the ceiling.
This outflow was matched by an inflow of cold air through the lower opening. The
flow in the heated room is that of displacement ventilation, with cool air entering
at low levels and warm air leaving at high levels (Linden 1999). If the larger room
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is infinite in size, this situation is equivalent to natural displacement ventilation of a
single room connected to the exterior and a steady state develops with a two-layer
stratification in the smaller room. The height of the interface depends only on the size
of the openings and the height of the room, and is determined by equating the volume
flux in the plume with that through the openings (Linden, Lane-Serff & Smeed 1990).

In a finite-size room, once the warm air reaches the far wall of the unheated room it
begins to accumulate in an upper layer of increasing depth. Consequently, the pressure
difference across the upper opening decreases and the outflow decreases accordingly.
Since the interface height is determined by this volume flux and the plume volume
flux increases with height, the interface descends. Furthermore, since the temperature
in the plume decreases with height, this lowering of the interface means that the
upper layer in the heated room increases in temperature with time. Thus warmer
air subsequently enters the unheated room producing stable stratification there. The
temporal behaviour in the heated room is determined by a time scale related to the
size of the unheated room.

In this paper, we extend that work by considering interconnections at other heights
in the dividing wall and a connection to the exterior through an exit opening at the
bottom of the unheated space. Since the exterior is colder than the air within the
spaces, no flow will occur through this opening unless there is a source of volume
as well as a source of buoyancy. This can be thought of as an example of an air-
conditioned space where cold air is introduced through the ceiling and removed in
a return duct also in the ceiling – the geometry is then inverted from the previous
discussion.

We develop a theoretical model that describes the temporal evolution of the flow
for such a situation in § 2. The introduction of an equivalent height, as proposed by
Marino, Thomas & Linden (2005), gives extra physical insight into the analytical
approach. The model is tested against laboratory experiments which incorporate
mixing and volume supply of the source. The experimental results are presented,
compared with the theoretical findings and discussed in § 3. Our conclusions are
presented in § 4.

2. Theoretical model
2.1. Initial filling of the forced room

Consider two rooms of height H and horizontal areas Sf and Su (figure 1). The spaces
are connected to each other by means of openings 1 and 2 located at heights h1 and
h2 from the floor, respectively, with h2 < h1 < H . In the space we distinguish the
‘forced’ room, there is a turbulent plume rising from a source of buoyancy located at
the floor. The other space is called the ‘unforced’ room. Both spaces initially contain
air of density ρ.

The air heated by the buoyancy source forms a plume that reaches the ceiling and
spreads sideways covering the entire top surface Sf of the forced room, forming a
warm upper layer. As the plume rises, it entrains air from its surroundings and carries
it into the upper layer, which increases in depth with time. There is no exchange of
warm air between the two rooms provided the interface does not reach opening 1
and, as assumed throughout, the plume width is less than that of the forced room.

Initially we restrict our attention to the case where the plume is a ‘pure’ plume
with constant buoyancy flux but with zero volume and momentum fluxes at the
source. Thus without the addition of volume, there is no flow to the exterior and so,
as mentioned above, we can consider the enclosures as being closed to the exterior
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Figure 1. Sketch of the situation modelled when the forced room is beginning to fill.

environment. In this case, the classical ‘filling box’ model developed by Baines &
Turner (1969), which we now briefly summarize, describes the flow.

The volume Qp flux and the reduced gravity g′ = g�ρ/ρ of a Boussinesq turbulent
plume at a height h above the source are related to the buoyancy flux B by

B = g′Qp, (2.1)

Qp = C(Bh5)1/3, (2.2)

g′ =
1

C
(B2h−5)1/3, (2.3)

where C (≈ 0.09) is a dimensionless constant related to an empirically determined
entrainment coefficient α; for example C = (6/5)α(9α/10)1/3π for ‘top hat’ profiles
(Morton, Taylor & Turner 1956; Turner 1986).

Baines & Turner (1969) studied the evolution of the interface or ‘first front’ of
buoyant fluid as it descends from the ceiling. Since all the fluid added to the layer
above the front comes from the lower ambient fluid as a result of the entrainment into
the plume, the front evolution is given by a local balance of volume at the interface
h = hf , in the form

Sf

dhf

dt
= −Qp(hf ). (2.4)

Substituting (2.2) into (2.4) and solving the differential equation, it follows that

ξf =

(
1 +

2C

3
τ

)−3/2

, (2.5)

with ξf = hf /H and τ = t/(Sf B−1/3H −2/3). Thus the dimensionless time τ1 taken for
the interface to reach opening 1 located at ξ1 =h1/H is

τ1 =
3

[
(ξ1)

−2/3 − 1
]

2C
. (2.6)

Hence τ1 depends on the height of the top opening and the plume features, but it is
independent of the reduced gravity distribution in the warm layer.



428 L. P. Thomas, B. M. Marino, R. Tovar and P. F. Linden

Sf

Forced room

HAmbient fluid ρ

hf

2

h1

Unforced room

ρs

Su 

hu

1

u2

u1

ρ

ρ – ∆ρ

Figure 2. Sketch of the situation modelled when mixed fluid starts to flow to the
unforced room.

Baines & Turner (1969) and Worster & Huppert (1983) used approximations to
obtain the density profile of the warm layer. The actual profile is an intermediate
between two extreme cases – no mixing and complete mixing inside the buoyant layer.

If there is no mixing, the density profile above the first front is given by (2.3), and
the total buoyancy in the warm layer is∫ H

hf

Sf g′ dz =
3

2C

Sf B2/3

H 2/3

(
ξ

−2/3
f − 1

)
, (2.7)

which is equal to Bt if ξf (τ ) is given by (2.5). Thus we check that the total buoyancy
in the warm layer is a linear function of time, as expected when a constant-flux source
is considered.

In the case of complete mixing, the uniform but time-dependent reduced gravity
g′

f (t) in the warm layer satisfies

Sf g′
f (H − hf ) =

∫ H

hf

Sf g′ dz. (2.8)

In such a case, the evolution of the system may also be given by the conservation
of the total buoyancy in the warm layer as

d[Sf g′
f (H − hf )]

dt
= B, (2.9)

instead of imposing the volume conservation (2.4). As a result, the advance of the
front is again (2.5), but now calculated using the uniform reduced gravity g′

f (t) �= g′(t).

2.2. Venting the forced room

After time τ1, the warm fluid flows through opening 1 into the unforced room while
the ambient fluid flows in the opposite direction through opening 2 (figure 2). For
ξ1 < ξu < 1, the warm fluid moves upwards to the ceiling of the unforced room where
it accumulates, while the forced room incorporates ambient fluid from the unforced
room.

In the forced room, the situation is described by the ‘emptying filling box’ model
proposed by Linden et al. (1990). The volume fluxes through the top and bottom
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openings are given by

Q1 = A∗
1u1, Q2 = A∗

2u2, (2.10)

where u1, u2 are the mean velocities and A∗
1, A∗

2 are the ‘effective areas’ of the top and
bottom openings, respectively. The corresponding discharge coefficients accounting
for streamline contraction are included in the values of A∗

1 and A∗
2. Thus the values

of A∗
i (i = 1, 2) range from 0.6 (sharp orifice) to 0.98 (streamline shapes) times the

geometrical areas of the openings, depending on the opening shape and profile. The
discharge coefficient of a planar slit as used in the experiments described in § 3, ranges
from 0.611 (potential flow) to 0.687 (high Reynolds number see e.g. Ali & Foss 2003).

When the volume of fluid supplied by the source is negligible, volume conservation
implies

Q1 = Q2 = Q. (2.11)

Adapting the result obtained by Linden et al. (1990) to the present case with h1 �= H ,

Q = A∗
√

g′
f (h1 − hf ), (2.12)

where g′
f = g′

f (t) is the average reduced gravity in the forced room and

A∗ =
A∗

1A
∗
2√

1
2

(
A∗

1
2 + A∗

2
2
) (2.13)

is the effective area of the openings.
Because g′

f varies with time, the interface height in the forced room is given by the
buoyancy conservation

d[Sf g′
f (H − hf )]

dt
= B − g′

f Q. (2.14)

Note that (2.14) is different from the volume conservation used by Lin & Linden
(2002) that in the present notation reads

Sf

dhf

dt
= −Qp(hf ) + Q. (2.15)

As an approximation for g′
f , we use

g′
f = θg′, (2.16)

where g′ is given by (2.3) and θ is a constant of the order of unity. Substitution of
(2.12) and (2.16) into (2.14) leads to

dξf

dτ
=

A∗

H 2

√
θ

C
ξ

−5/3
f (ξ1 − ξf ) − C

θ
ξ

5/3
f

5
3
ξ−1
f − 2

3

, (2.17)

with ξ1 = h1/H .
Since the finite size of the unforced room does not affect the flow at this stage (see

§ 2.3), the time scale is the same as that in the previous stage (Sf B−1/3H −2/3). The
evolution of ξf depends on the entrainment constant C modified by the mixing in the
warm layer by means of θ , and the dimensionless geometrical parameters, namely,
the height ξ1 of the top opening and the vent area A∗/H 2.
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Figure 3. Position of the interface in the forced room during the steady-state regime (solid
line) and ξss = ξ1 (dotted line). The point at ξ1 = 1 corresponds to the result obtained by
Linden et al. (1990).

The flow in the forced room tends towards a steady state. Putting dξf /dτ =0 in
(2.17), the position ξss of the interface is given by

A∗

H 2
= C3/2

(
ξ 5
ss

(ξ1 − ξss)

)1/2

, (2.18)

for θ ≈ 1. This equation is a more general relationship than that obtained by Linden
et al. (1990) for the particular case with h1 = H (their equation 2.11a). Figure 3
shows the position ξss calculated using (2.18) as a function of ξ1 which shows that the
distance between the vent and the steady-state front position is reduced significantly
when ξ1 decreases; in particular ξss ≈ ξ1 for ξ1 � 0.4.

During the transient flow, warmer fluid flows into the unforced room and forms
a stable stratification. The hydrostatic pressure in the unforced room is obtained by
integration of the vertical density profile ρu(z) inside the warm layer. In order to
simplify the solution, an equivalent height hu is defined for which a warm layer with
uniform density g′

f (t) – the density of the forced room – generates the same pressure
difference in the unforced room, that is

hug
′
f = g

∫ H

0

(ρ − ρu)

ρu

dz. (2.19)

Therefore, the buoyancy excess is

mf = g′
f Sf (H − hf ) in the forced room, (2.20a)

mu = g′
f Su(H − hu) in the unforced room. (2.20b)

Normally hu does not coincide with the actual height h∗
u of the interface defined

by the maximum density gradient in the warm layer. Later, we will return to the
stratification of the unforced room.

Conservation of mass implies

Sf g′
f (H − hf ) + Sug

′
f (H − hu) = Bt, (2.21)
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Figure 4. Sketch of the situation modelled when the mixed fluid in the unforced room has
exceeded opening 1.

where g′
f is given by (2.16) for τ > τ1. Note that (2.21) is also different from the

volume conservation relationship

Su

dhu

dt
= −Q, (2.22)

used by Lin & Linden (2002) for calculating hu. Substituting (2.16) into (2.21), it
follows that ξu = hu/H is

ξu = 1 − R

[
C

θ
ξ

5/3
f τ − (1 − ξf )

]
, (2.23)

where τ = t/(Sf B−1/3H −2/3) as before and R = Sf /Su is the aspect ratio of the areas
of the rooms.

This stage continues until the front in the unforced room reaches opening 1. The
time τ2 at which this occurs depends on the solution of the system formed by (2.17)
and (2.23) which involve the parameters of the problem: C/θ , A∗/H 2, ξ1, and R.

2.3. Coupling the flows in both rooms

For ξ1 >ξu > ξ2, the state in the unforced room affects the flow in the forced room
(figure 4). At some level hN , the neutral level, the hydrostatic pressure in both rooms
is the same and this height determines the direction of the flow through the openings.
The fluid flows from the forced to the unforced room through an opening above this
level, and in the opposite direction below.

We now introduce zf and zu as the vertical distances between the neutral level
and the heights hf and hu in the forced and unforced rooms, respectively. Using
Bernoulli’s theorem, the velocities of the fluid through the openings are

u2
1 = 2g′

f (h1 − hf − zf ) − 2g′
f (h1 − hu − zu), (2.24)

u2
2 = 2g′

f zf − 2g′
f zu, (2.25)

for h2 � (hu, hf ) � h1.
By eliminating h1 from (2.24) and defining z = zf − zu, (2.24) and (2.25) become

u2
1 = 2g′

f [(hu − hf ) − z], (2.26)

u2
2 = 2g′

f z. (2.27)
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At this stage, the flow is independent of the height of both openings and the neutral
level, and depends on the differences (hu − hf ) and (zf − zu). Note also zf and zu can
be positive or negative, and then (2.26)–(2.27) can represent the situations in which
hf and hu are greater or less than hN .

Equations (2.26) and (2.27) are the relationships that describe the ventilation of
one room through two openings to an infinite environment according to the model
developed by Linden et al. (1990) (their equations 2.2a and 2.2b, respectively) with
a proper definition of distances from the fronts to the neutral level and to the floor.
Thus the problem of the flow inside two interconnected rooms is reduced to the
problem of an equivalent single room ventilated to the environment.

Using the whole volume conservation (2.11), it follows that

Q = A∗
√

g′
f (hu − hf ), (2.28)

where A∗ is given by (2.13). The evolutions of the interfaces in the forced and unforced
rooms are given by (2.14) and (2.23), respectively. Substituting ξ1 by ξu in (2.17), the
dimensionless equations for the flow in the two connected rooms are obtained:

dξf

dτ
=

A∗

H 2

√
θ

C
ξ

−5/3
f

(
ξu − ξf

)
− C

θ
ξ

5/3
f

5

3
ξ−1
f − 2

3

(2.29)

and (2.23), which constitute a system of two coupled ordinary differential equations
that can be easily integrated numerically. The initial condition for the integration is
taken from the values of the variables obtained at the end of the stage described in
§ 2.2.

Comparing the two terms of the numerator on the right-hand side of (2.29), we
find that the flux between the two rooms is important when

A∗

H 2
>

(
C

θ

)3/2

≈ 0.03. (2.30)

The flow in the forced room evolves as in a closed room if A∗/H 2 � (C/θ )3/2 and
then the front position may be approximated by (2.5). On the contrary, the buoyancy
supplied by the source in the forced room is strongly ventilated to the unforced room
for A∗/H 2 � (C/θ )3/2. In such a situation, the aspect ratio R affects the evolution of
the flow in both rooms.

2.4. Solutions

Figure 5 shows the comparison between the present analytical results and those
obtained by Lin & Linden (2002) for the special case studied there in which openings
1 and 2 are at the top and bottom of the shared wall, respectively (ξ1 = 1, ξ2 = 0). As
expected, the positions of both fronts given by the present model tend to be the same
for long times. The evolution of the front in the forced room is near to that predicted
by Lin & Linden (2002) (dashed line) even though volume conservation (see (2.15))
was used by them. However, the evolution of the position of the equivalent front in
the unforced room shows a quite different behaviour. This may be a result of the use
of volume conservation (2.19) instead of the buoyancy conservation employed here
for calculating the progress of this interface.
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Figure 5. Evolutions of the dimensionless front positions in the forced (thick solid line) and
unforced (thin solid line) rooms for the case of two equal size rooms. The dashed, dash-dotted
and dotted lines correspond to ξf , ξu and h∗

u/H , respectively, calculated using the model

introduced by Lin & Linden (2002). (ξ1 = 1; A∗/H 2 = 0.02; R = 1.)
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Figure 6. (a) Evolutions of the dimensionless front positions for ξf , ξu > ξ2 in the forced (thick
lines) and unforced (thin lines) rooms: ξ1 = 1, ξ2 = 0 (dashed line); ξ1 = 0.9, ξ2 = 0.1 (solid line);
ξ1 = 0.8, ξ2 = 0.2 (dash-dotted line); ξ1 = 0.7, ξ2 = 0.3 (dotted line). The front positions at τ1

and τ2 are indicated by circles. (b) Values of time τ2 and position ξf (τ2) obtained for the same

cases in (a). (R = 1; A∗/H 2 = 0.02).

Figure 6(a) shows the dimensionless positions of the interfaces as a function of
time for different heights of the top and bottom openings. For ξ1 < 1, the front in the
forced room evolves as that in a closed room during the initial stage as explained in
§ 2.1. In the unforced room the front is formed after a time τ1 and then begins to
move down as described in § 2.2; after a time τ2, the solution given in § 2.3 is applied.
Figure 6(b) shows τ2 and the height of the interface in the forced room at this time,
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Opening 1 Opening 2

Run ξ1 A/H 2 ξ2 A/H 2 ts(s)

1 1 0.042 0 0.042 460
2 1 0.023 0 0.023 705
3 1 0.042 0.36 0.042 2190
4 1 0.042 0.70 0.042 3780
5 0.75 0.042 0 0.042 520
6 0.33 0.042 0 0.042 870
7 0.66 0.042 0.36 0.042 1420
8 1 0.005 0.91 0.005 6800
9 0.75 0.023 0 0.023 620

Table 1. Values of the main parameters varied in the experiments. The time ts , at which
mixed fluid starts to pass through the exit holes, is also included.

ξf (τ2), obtained in the present cases; ξf (τ2) and ξu(τ2) are also marked with solid
circles on the curves of figure 6(a).

A lower position of opening 1 delays the beginning of the exchange between both
rooms because of the increase of t1. However, the lower ξ1, the larger τ2, and larger
changes are seen in the evolution of the fronts at the beginning of the unforced
room filling. This stage lasts longer than ten characteristic times, and increases with
a reduction of the height of opening 1. For t > τ2, the evolution of the dimensionless
front positions in both rooms tends to be the same in all cases because the stronger
flow generated between the rooms compensates for the initial differences.

The solutions for different dimensionless opening areas A∗/H 2 show an effect upon
the flow according to the condition (2.30). For A∗/H 2 = 0.1 > 0.03 ≈ (C/θ )3/2, both
fronts tends to evolve closely to each other after τ1, so that the system behaves as a
single room. For smaller A∗/H 2, the front in the forced room evolves quicker than
that in the unforced room. Thus for A∗/H 2 = 0.03 ≈ (C/θ )3/2, the evolutions of the
fronts are slightly separated, and the difference between the fronts heights increases
as the value of A∗/H 2 diminishes, in such a way that for A∗/H 2 = 0.003, the flow in
the forced room initially behaves similarly to that in a closed room.

3. Experimental results and comparisons with the theory
3.1. Experimental set-up

The physical model consisted of a Perspex box 0.248 m high, 0.60 m long and 0.20
m wide (interior size) with an inner wall in the middle of the box forming two spaces
each of 0.295 m long. The dividing vertical wall contained two rectangular openings
at different levels as given in table 1.

The box was initially filled with tap water (ρ = 0.998 g cm−3), and a nozzle especially
designed to produce a lazy turbulent plume (Hunt & Kaye 2001) simulated the source
of buoyancy. The nozzle, fixed at the top of the forced room, released salt water
(ρs = 1.034 g cm−3) at a constant flow rate Qs = 2.57 cm3 s−1 in all the experiments.
The density of the salt water and the flow rate were measured using an Anton Paar
DMA 5500 density meter and an in-line water flow meter, respectively. The buoyancy
flux was B = gQs(ρs − ρw)/ρw = 90.9 cm4 s−3. Holes of diameter 0.0342 and 0.0415 m
drilled in the ceiling of the unforced room provide an exit of the input fluid. The fluid
released from these holes was collected to check the buoyancy flux B by measuring
its volume and mass at the end of each experiment.
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Since salt water is used to model the buoyant fluid, the experimental set-up is
vertically inverted with respect to the arrangement shown in figures 1, 2 and 4 (for
details see Linden 1999; Lin & Linden 2002). However, hereinafter the experimental
findings are introduced according to the configuration and nomenclature given in § 2.

The nozzle acts as a source of fluid that may change the neutral level in which
the hydrostatic pressure is the same in both rooms (see § 2.3). The height difference
between the position of the interface in the forced room and that in the unforced
room associated to this effect may be estimated by using the experimental value of Qs

instead of Q in (2.28). We find that the difference in height is 0.02 cm when the smallest
openings are used (Run 8), which is negligible compared with the measured heights.

A panel of fluorescent lights and a diffusive screen were located behind the model
and a video camera was placed 5.2 m on the other side. The dye added to the salt
water reduces the intensity of the light passing through the model and the intensity
reduction is related to the fluid density averaged along the light path. The width-
average density distribution is obtained by processing the images taken by the video
camera with the method applied by Cenedese & Dalziel (1998).

The images are digitized and processed with DigImage software (Dalziel 1993,
1995). The average of the horizontal intensities in each pixel row in carefully chosen
windows without obstructions are calculated. These average intensity values as a
function of the vertical position give the density profile as a function of height. As
the vertical stratification is formed a short time after the beginning of the experiment,
the integration of the vertical density profile provides an estimate of the mass in
each room. As seen later, the total mass excess (that is, the buoyancy excess defined
in theory) in both rooms initially follows a linear function of time because the net
buoyancy flux input remains constant until mixed water starts to escape through the
exit holes in the unforced room. This behaviour allows us to estimate the density
obtained by image processing with an error less than 2%. An additional check of
this value comes from the measurement of the volume and weight of the total fluid
performed at the end of each experiment. The uncertainty of the height values is
about the size of a pixel in the images, that is, less than 0.05% of the box height.

3.2. Effects of the opening size

As described in § 2, the flow between the rooms has to be described by means
of a balance between the buoyancy integrated in each chamber. Therefore, volumes
(determined by front positions) and density distributions are not important separately
but together, and therefore the comparisons should be done mainly on these integrated
buoyancy values.

Figure 7 shows a comparison between the measurements of the buoyancy excess in
both chambers for Runs 1 (squares), 2 (circles) and 8 (triangles) and the corresponding
theoretical predictions. There is a good agreement for t � ts as expected. The relative
error between theory and experimental results at τ ≈ 30, for example, is less than 6%,
except for the unforced chamber in Run 8 where the value of the buoyancy excess is
very small. For t > ts , the agreement for the total buoyancy excess is gradually lost
because the total buoyancy conservation (2.21) is no longer valid owing to the fluid
loss from the box. However, the theoretical curves are acceptable estimates even in
the later parts of the experiments. Comparisons for the other cases of table 1 lead to
similar findings.

The open and crossed symbols corresponds to measurements of the density profiles
in the forced and unforced rooms, respectively. Solid symbols represent the sum of
these results and correspond to the buoyancy excess in the whole box. The buoyancy
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Figure 7. Experimental evolution of the buoyancy excess (symbols) when the opening size is
varied as shown at the top right-hand side. The theoretical predictions are indicated by a solid
line for Run 1, a dashed line for Run 2 and a dash-dotted line for Run 8. The times ts at
which mixed fluid is seen to flow out through the exit holes in Runs 1 and 2 are marked with
vertical dotted lines. (R = 1; ξ1 = 1; ξ2 = 0.)

excess in the forced room is always greater than that in the unforced room even
though they converge with time. Therefore, a buoyancy difference drives a flow from
the forced to the unforced room through opening 1 as observed in the experiments.
Consistently, a flow from the unforced room to the forced room through opening 2
is established, as shown in figures 2 and 4.

Figure 7 confirms that the reduction of the opening size increases the average
density difference between the rooms with a reduction of the flow between them, as
discussed in § 2.4. Also a reduction of the opening size is then accompanied by an
increase of ts , suggesting a reduction of the overall mixing (the time ts for the smallest
opening case falls outside the range of the abscissa).

3.3. Effects due to the change of the opening 1 height

Figure 8 shows the density profiles measured at different times when ξ2 = 0 and the
opening 1 of equal size is located at different positions on the internal wall in Runs
1, 5 and 6, as indicated at the top right-hand side.

Since the fluid input is the same for the three experiments, the total buoyancy
inside the box at a given time is the same provided that mixed fluid was not drained
through the exit holes. The density profile in the forced room evolves as in an isolated
room until the density interface reaches opening 1. In fact, the forced room contains
all the fluid introduced by the source in the case with the lowest ξ1 (Run 6 - dotted
line) at τ = 6.7. At this time, opening 1 located at an intermediate position (dashed
line) allowed the passage of mixed fluid to the unforced room. The maximum density
difference in the unforced room is less than that for the experiment with ξ1 = 1 (solid
line). The density interface in the forced room is found to be sharper in this case.



Buoyancy-driven flow between two rooms with two openings 437

0

0.5ξ

ξ

ξ

ξ

ξ

ξ

ξ

1.0

0.01 0.02 0.03

0

0.5

1.0

0.02 0.04 0.06

0

0.5

0.05 0.10
ρ/ρs ρ/ρs

0

0.5

1.0

1.0

0.04 0.08

0 0.01 0.02 0.03 0.04
0

0.5

1.0
(a)

0 0.02 0.04 0.06
0

0.5

1.0(b)

(c)

(d )

0 0.05 0.10 0.15

1.0

0.5

0

0 0.04 0.08
0

0.5

1.0

Opening 1

Opening 2
1, 5, 6 Run

Figure 8. Density profiles in the forced (left) and unforced (right) rooms at times (a) τ = 6.7,
(b) 21, (c) 35, (d) 82. Opening 2 is at the bottom in the three experiments and opening 1 at
different positions on the shared wall as shown at the top right-hand side. The solid, dashed
and dotted lines correspond to Runs 1, 5 and 6, respectively. The equivalent profiles given by
the model for Run 1 are also included in the graphs (box-shaped dash-dotted lines).

The equivalent profiles for Run 1 given by the theoretical model are included
in figure 8(a–c). The uniform density layers adopted by the model give a rough
approximation of the real density profile. However, the experimental buoyancy values
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calculated by integration of the density profiles, and therefore the flow between the
rooms, differ only about 5% from the model results.

At τ � 21, the profiles for the experiment with ξ1 = 1 (Run 1) and with an
intermediate position of opening 1 (Run 5) become similar in both chambers. On the
contrary, opening 1 located at the lower position (Run 6), allowed the passage of only
a small volume of dense fluid to the unforced room. The density profile is smooth
there, while a higher density interface than that of the other two cases is observed
in the forced room. Later (figure 8c), this interface becomes sharper, but its rate of
rise decreases as a consequence of the flow of the dense fluid to the unforced room.
This stronger flow rate to the unforced room increases the buoyancy excess faster
there, tending to the values of the other cases, and the interface reaches the top of the
unforced room after τ =35. Finally, for later times, all the profiles tend to be similar
(figure 8d).

The buoyancy excess as a function of the dimensionless time τ is seen in figure 9.
The curves and the values of ts are similar for the two runs with opening 1 at
the highest positions. In contrast, in Run 6 the buoyancy excess evolves in a quite
different way. The time ts is almost twice the value of the other cases, but also
the buoyancy excess difference between the rooms is higher. For t/ts > 1, the total
buoyancy excess is observed to depart from the linear behaviour because mixed fluid
is being released from the exit holes. Figure 9(b) shows the same results, but with time
and buoyancy excess non-dimesionalized with ts and the buoyancy excess ms at that
time, respectively. The different behaviour for t/ts < 1 in the three cases indicates that
the height of the openings not only changes ts , but also the mixing rate inside the
box. The density difference between the rooms is maintained for a longer time than ts .

In summary, a lower height of opening 1 maintains a higher buoyancy excess
difference between the rooms, reduces the overall mixing and increases ts .

3.4. Effects of the change of opening 2 height

Density profiles obtained in the experiments with openings of equal size, ξ1 = 1 and
opening 2 located at different positions on the shared wall are shown in figure 10.
The stratification in both chambers is strong and the profiles are similar at τ = 6.7,
suggesting that the position of the lower opening has not yet influenced the flow
inside the box. A difference appears when the interface in the unforced room reaches
the lower opening (figure 10b). In such a situation, the interface in the unforced
room starts to move downwards with a velocity imposed by the mass flux from the
nozzle, which pushes ambient fluid through the exit holes. Meanwhile, the density
in the forced room increases steadily, and so the density of the fluid passing to the
unforced room increases giving a non-uniform density profile. The interface and the
fluid trapped in the lower part of the unforced room move downward and eventually
reach the floor (figure 10c). Finally, the mixed fluid starts to leave the box and the
profiles tend to be uniform for later times (figure 10d).

The buoyancy excess evolves consistently with the previous results. It is found that
for higher ξ2 the time for which the mixed fluid begins to leave the box is longer, and
the buoyancy excess difference between the rooms is maintained for a longer time
than ts .

3.5. Different heights of both openings

Figure 11 shows a comparison of the evolution of the buoyancy excess among four
cases in which opening 1 does not fall below, and opening 2 does not exceed, half
the total height. For τ � 20 (see inset of figure 11), the evolution of m in Run 1 is
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Figure 9. (a) Evolution of the buoyancy excess contained in the forced room (open symbols),
in the unforced room (crossed symbols) and in both rooms (solid symbols) for the experiments
of figure 8. (b) Evolution of the buoyancy excess non-dimensionalized with the values of ms and
ts corresponding to each experiment. Symbols correspond to Runs 1 (squares), 5 (diamonds)
and 6 (down triangles).

close to that in Run 3 because opening 1 is at the top of the shared wall causing
the flow to the unforced room to be established immediately after the plume reaches
the top of the forced room in both cases. For τ � 100 (figure 11), the progress of
m in Run 1 tends to be similar to that in Run 5 once opening 1 is reached by the
interface in the forced chamber; time ts is found to be nearly the same for these runs.
The same happens for experiments 3 and 7, even though the corresponding times ts
are somewhat different. The similitude of the evolution is maintained for long times
(i.e. for t � ts) indicating that the rate of mixed fluid leaving the box through the
exit holes, and therefore mixing inside the box, are mainly affected by the position of
opening 2.
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Figure 10. Density profiles in the forced (left) and unforced (right) rooms at times (a) τ = 6.7,
(b) 35, (c) 167, (d) 387. One opening is located at the top and the other, of equal size, at
different positions on the shared wall, as shown at the top right-hand side. The solid, dashed
and dotted lines correspond to Runs 1, 3 and 4, respectively.

4. Conclusions
We have studied analytically and experimentally the flow driven by density

differences between two interconnected rooms generated by a single heat source.
In particular, we have analysed the features of the transient convective flow for
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Figure 11. Evolution of the buoyancy excess contained in the forced room (open symbols), in
the unforced room (crossed symbols) and in both rooms (solid symbols) for Runs 1 (squares), 5
(diamonds), 3 (right-hand triangles) and 7 (left-hand triangles) for 0< τ < 400. Vertical dotted
lines indicate the time ts . The inset shows an enlargement of the same results for 0 < τ < 20.

different positions and sizes of the two openings located on the vertical wall shared
by the rooms.

The evolution of the stratification in the rooms is described by an analytical model
that estimates the flow using the hydrostatic pressure on both sides of the openings
by simplifying the density profiles inside the warm layers. The model provides good
quantitative results from the time when the heat source is turned on, up to the time
ts when the interface in the unforced room reaches the ceiling. After the time ts , the
theoretical prediction departs gradually from the experimental results because the
total buoyancy excess is not maintained in the experiments, but it may be considered
as a reasonable estimate according to the findings of § 3.2.

The theoretical model introduced here improves and generalizes previous models
and allows the analysis of situations in which the openings are located at different
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Consequences

Average density difference
Effect Overall mixing between rooms ts ts (s) Run

Openings at the Taken as reference
top & bottom 460 1

Reduction of opening size Reduction Increase Increase 705, 6800 2, 8
Lower opening 1 Reduction Increase Increase 520, 870 5, 6
Higher opening 2 Reduction Increase Increase 2190, 3780 3, 4
Lower opening 1 + Reduction Increase Increase 1420 7

higher opening 2

Table 2. Results obtained arranged by effect.

heights on the shared wall. Thus the height ξss for the steady-state ventilation of
a single room as a function of ξ1 is obtained as illustrated in figure 3. Buoyancy
conservation for determining the advance of the fronts is used instead of volume
conservation employed previously, obtaining better predictions. The heights of the
interfaces may be higher or lower than the neutral level, a situation that allows
us to study more complex configurations and regimes. In addition, the concept of
an equivalent layer of a non-uniform density profile, as proposed by Marino et al.
(2005), is included in the theoretical approach to improve the physical understanding
but also to simplify the mathematical equations giving an analytical solution of the
problem.

The condition (2.30) determines the importance of the opening size on
the flow. Stratification in the forced room evolves as in a closed room if
A∗/H 2 � (C/θ )3/2 ≈ 0.03; the forced room is strongly ventilated to the unforced room
in the opposite situation and then the aspect ratio R may affect the evolution of the
flow in both rooms.

At the beginning, the flow is determined mainly by the position of the opening
furthest from the source (opening 1). If this is at the top on the shared wall, the flow
to the unforced room is established just after dense fluid reaches the ceiling of the
forced room. The position of opening 2 determines the volume of the unforced room
that does not participate in the flow. In fact, all the fluid of the unforced room below
opening 2 remains with the initial density.

The experiments provide useful insights into the mixing and the effects produced
by the volume flux from the source. The flow develops similarly up to about 15–
20 characteristic times in all cases, confirming that the characteristic time tf =
Sf B−1/3H −2/3, introduced in § 2, is supported by the experimental results even in the
presence of mixing.

The results of the experiments, which are summarized in table 2, show that a
reduction in the size of the opening, the reduction in height of opening 1 or the
elevation of opening 2, increases ts and alters the efficiency of the heating system. An
increase of ts means a decrease of the overall mixing accompanied by an increase of
the density difference between the rooms. However, these consequences are nonlinear
with the magnitude of the effect or with its combination, and further study of the
flow including the mixing is required.

This work was supported by CONICET (Argentina) under Grants PIP 2826 and
5893, CONACYT (Mexico) project U41347-F and by a grant from the UC MEXUS-
CONACYT.
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